PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 1998

Steady states and global dynamics of electrical activity in the cerebral cortex
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Steady states and global dynamics of electrical activity in the cerebral cortex are investigated within the
framework of a recent continuum model. It is shown that for a particular physiologically realistic class of
models, at most three steady states can occur, two of which are stable. The global dynamics of spatially
uniform activity states is studied and it is shown that in a physiologically realistic class of models, the adiabatic
dynamics is governed by a second-order differential equation equivalent to that for the motion of a Newtonian
particle in a potential in the presence of friction. This result is used to derive a simplified dynamical equation
in the friction-dominated limit. Solutions of these equations are compared with those of the full global dynam-
ics equations and it is found that they are adequate for time scales longer than approximately 100 ms provided
dendritic integration times are less than approximately 10[85063-651X98)12908-3

PACS numbes): 87.22.Jb, 87.22.As, 87.16e

[. INTRODUCTION to be stable, but not so stable that all interesting behavior is
suppressed. Normal subjects are not prone to spontaneous
Recently we developed a continuum model for the propaseizures, whereas in epilepsy, for example, the cortex can
gation of electrical activity in the cerebral cortgk]. This  undergo a transition to a seizure state in which all the neu-
model traced the evolution of quantities such as the neuronabns are firing far above their normal rate. Such seizures are
firing rate, averaged over volumes large enough to containot permanent: Some feedback mechanigmcombination
many neurons, as in several previous wofRs-12]. Both  of mechanismsacts to return the brain to its normal state
excitatory and inhibitory neuronal populations were in-after seconds or minut¢g,13].
cluded, as were the effects of nonlinear neural responses, The purpose of the present work is to understand better
temporal integration in the dendrites, and propagation timehe steady states and global dynamics of a generalized ver-
delays in the axons. This model allowed us to write downsion of the model introduced in our previous wdrk], an
equations for dynamics, steady state solutions, and dispeessential step prior to incorporating feedbacks in future
sion and stability of linear waves. works. In Sec. Il we study the possible steady-state solutions
The above model did not include the effects of feedbaclof the generalized model, deriving a steady-state equation
on the basic parameters of the cortex, such as the threshadghd limits on the maximum number of steady states in cer-
potential for neuronal firing, and the effective strengths oftain cases. Apart from being the simplest and most funda-
coupling between various neuronal populations. Such feednental solutions of the model, these steady states and their
backs are known to be of central importance in the dynamicéasins of attraction determine the qualitative dynamics in the
of the actual cortex: The state of arougalg., relaxed vs absence of feedback and provide strong constraints on the
alerp strongly affects the cortical response to stimuli as meadynamics more generally for slow feedbacks. In Sec. Ill we
sured by electroencephalografiSEG9, for example[13].  study how the steady states and their interrelationships de-
Such responses are normally termeaked response poten- pend on the underlying parameters of the model, demonstrat-
tials. These responses depend not only upon fast corticahg that a class of models that is particularly plausible physi-
responses on time scales well below 100 (®g., voltage- ologically has simple properties in this respect, possessing
dependent changes in ion conductivities of neuronal memenly three steady states.
brane$, but on feedbacks that evolve over longer intervals Many observations of electrical activity in the cortex are
(e.g., the action of chemical neurotransmittddsd]. In gen-  made at relatively coarse spatial scales. EEGs, for example,
eral, we take feedbacks to include any modulation of corticabften use scalp electrodes separated by several centimeters,
parameters that depends on the cortical state and/or its higsile most short-scale features are filtered out as a result of
tory. the conductivity of the cerebrospinal fluid, skull, and scalp in
Another area in which feedbacks are of importance is inany casg7]. In addition, Robinsomt al.[1] showed that the
the onset and termination of seizures. It is likely that thelongest-wavelength eigenstates are the least damped and thus
cortex operates in a state close to marginal staljilifyso as  are likely to contain the most spectral power when the cortex
is driven by noise or complex inputs. Hence, in Sec. IV we
study the large-scale dynamics of the cortex. Furthermore,

*Electronic address: robinson@physics.usyd.edu.au we do this in a simplified way by specializing to adiabatic
TElectronic address: rennie@physics.usyd.edu.au dynamics, which we define to be dynamics on time scales
*Electronic address: jjw@mhri.edu.au much larger than the dendritic integration time of order 5—10
$Electronic address: pdb@mhri.edu.au ms[1,5]. We show that the spatially uniform global dynam-
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ics of the cortex can be described by an equation that isvhich relates the mean firing rat€s andQ; of neurongthe
equivalent to that of a Newtonian particle moving under thepulse densitiein neurophysiological terminologyo the ap-
influence of friction in a potential whose minimums define plied potentialsv, andV;, wheree andi denote the excita-
the stable steady states of the system. When friction domitory and inhibitory populations. The functiom(x) repre-
nates it is also possible to write down a simplified first-ordersents the fraction of neurons that will fire at or below an
equation for the adiabatic dynamics in the governing potenincident potentiak; we assume that it is the same monotoni-
tial. Numerical results show that these adiabatic equationsally increasing function for both neuronal populations, with
approximate the dynamics well for time scales exceedinghe properties

~100 ms. In future work, extension of these equations to

incorporate adiabatic feedback will enable the qualitative dy- lim o(x)=0, 2
namical effects of various types of feedback to be deter- X

mined by looking at their effects on the potential and the )

resulting “forces” on the system. This ability is relevant to lim or(x)=1. ©)

X— 0

any analysis of feedback processes that adiabatically modify
the ba_sins of at;raction of the steady-state sqlutions of_ th?n general,s can be written in the form
dynamical equations. Faster feedback mechanisms also inter-
act with the basins of attraction, but an adiabatic approxima- X
tion is not possible. o(x)=f
It should be stressed that real cortical electrical activity

involves spatially nonuniform eigenmodes, as well as theWhere o'(u) is a non-negative, singly peaked, integrable
spatially uniform ones studied here. Inclusion of thes 9 ! gy p ' 9 '

modes, and the corresponding nonlinear mode-mode interaeb-ell'ShapeOI function, which we will assume to be symmetric
X P g gbout its peak. We also assume that the first few derivatives

tions, along with feedback, will also be essential in any full C ; . .
understanding of cortical waves and EEGs. _of o a}nd its inverse are contlnuous_. If we Wor_k\ng,i units
in which the full width at half maximum otr is of order
unity, we can conclude that the maximumdaf (V¢ ;)/dV,
Il. STEADY STATES OF THE CEREBRAL CORTEX is also of order unity, since Eq&) and(4) must be satisfied.
igure 1 shows an example afand its first three derivatives
the specific form used is the one employed in Secs. Ill and

o' (u)du, (4)

In this section we categorize the steady-state solutions
our dynamical model of the corteikl]. In Sec. Il A we

briefly review the dynamical equations themselves. Sectioh:_defined by Eq.(33) b?'o"v]- .
Il B generalizes our earlier fixed-point analy$t§ and de- The quantityV,; is defined to be the neuronal potential at

rives a single fixed-point equation whose solutions determind?€ Cell body where conversion to neuronal pulses takes
the steady states. Section Il C discusses the fixed points Race after inputs have been summed and filtered through the

general and in some special cases where their numbers gfgndrites. A good approximation 1, is given by[1]
strictly limited. Finally, necessary conditions for the occur- o

rence of multiple stable steady states are derived in Sec. I D. Vei=0ei——[Ugi—W,i] (5)
. . . . e, ge,l _ e,i eil
The mathematical analysis presented in the latter parts of this B
section is essential to the understanding of the physical be-
haviors studied in Secs. Ill and IV. dUe;
dt =Qaeai—@Ue;, (6)
A. Dynamical equations aw
In this section we first outline the main relevant results of dte’i =Qaeai— BWe,i, (7)

our recently developed wave-equation formulation of con-
tinuum cortical dynamicg1]. In a previous papefl] we

developed a set of nonlinear equations for cortical dynamic'%;gge(;inQdar'?tééi reprzfgr&';]n dii.r:: ag!‘ﬁ;ﬁger: (:n:gggg pualiss at
in the continuum limit. These equations incorporated excita- e, iuc gal ' B

constants parametrizing the dendritic response to an impulse.

én effect dendritic propagation smears out the temporal re-
ponse over a time scalemaxa 1,871} and the dendritic

lee acts as a low-pass filter. EquatiB) generalizes our
evious corresponding equatiph] by allowingg. andg; to

iffer.

nonlinear relationship between inputs to a neuron and it
firing rate. In all cases, the dynamical quantities are assume
to be averaged over a volume large enough to contain mal

neurons but very small relative to the whole cortex. This Outaoi | f h te al i
continuum approximation is easy to justify as there are utgoing puises from each neuron propagate aiong its

~10'% neurons in the cortex. Other continuum analyses hav&X°n and gxor_lal tree ata characteri_stic veloai_tyl\ssuming
been carried out previousi2—17], with some authors ob- an isotropic distribution of axons with approximately expo-

taining linear or nonlinear wave equations as a resul en_tially Qistributed rgnge@ee Ref[1] for the exact distri- .
[6,7,11,12, but we restrict attention here to the analysis of a ution), this propagation can be modeled by a wave equation

generalization of our previous moddl]. for the corresponding potentiai, :
The first of the central equations of our model is

Qei=0(Ve,), @

(92

J
W+27’e,i§+ Yei—03V2| bei= 75 Qe (8
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FIG. 1. Example of the function(V;) and its derivatives with respectYq, as calculated from Eq$33) and(A1)—(A3): (&) o(V;), (b)
first derivative,(c) second derivative, an@l) third derivative.

wherey, ;=v/re; andr,; are the characteristic ranges of the with Egs.(1), (9), and(10) unchanged, except thai is now

axons[1]. understood to be the time- and space-independent component
The incident potential®,e ,; at a particular location com- of ¢4. Equations(1) and(9)—(12) now yield

prise contributions from the wave potentiapg ; and inputs

¢ from outside the cortex. This leads to the final underlying Ve=Doctst Doer(Ve) — beia(V;), (13

equations of our model:

Vi=bisdst+biea(Ve) —bjio(V,) (14
Qae=AeshsT Acee— Aeidi ©) l s ° " I
after eliminating ¢¢;, Qej, and Q,eai, and writing by,
Q.i=aisPst aicPe—ai D . (100  =9mamn(=0) for compactness. Equati¢t4) implies

— —1
Here the constanta,,, are the fractional synaptic densities Ve=0(y), (19

associated with excitatory, inhibitory, and subcortical inputs

¢e,i s 10 excitatory and inhibitory neurons. A change of no- 1

tation from some of our previous wofk,15] is that ¢ now Y= [Vitbiio(Vi) —Dbis¢s] (16)
represents all external inputs to the cortex, thereby combin- e

ing the quantitiesQ, and Q,,s used previoush{1,8-1Q to i . , i

denote time-varying and static inputs, respectively. The colY=Qe). This solution is unique because we find that the
efficientsagq;s also subsume the four coefficierits, ; and right-hand side of Eq(16) is monotonically increasing with

te; that previously parametrized the contributions of time-Vi- Hence there is a unique value @{Ve) for any value of
varying and static inputs. Normalizations of thg, are dis-  Vi- The functiona(V) =y is also monotonically increasing
cussed in Sec. IIl B. with Vg (i.e., it is one to ong so there is a unique inversg

in Eq. (15).
If we substitute Eq(15) into Eq. (13) we find that the
B. Steady state equation steady-state values gfare given by the roots df(y), with
If we set all the time derivatives in Eq&)—(8) equal to
zero and, furthermore, seek spatially uniform solutions of f(y)=0"1(y) —beey + beio(V;) — beshs. (17

these equations, we find
Ve i=0eQueai (11) Steady state values of other variables then follow from the
el Felxasab application of Egs(1), (99—(12), and (15). The following
subsections are concerned with the properties of Eg.and
bei=Qelis (12)  its roots.
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C. Number of steady states

Looking at Eg.(17), we note thaty and o(V;) are
bounded on the interva0,1), whereasr~1(y) is unbounded
(see Fig. 2, with

lim o~ Y(y)=0, (18
y—1"

lim o Y(y)=—cc. (19
y—0"

00 02 04 06 08 1.0
y

FIG. 2. Example of the functioe~(y) and its derivatives with respect tg as calculated from Eq$34) and (A4)—(A6): (a) o~ 1(y),
(b) first derivative,(c) second derivative, an@l) third derivative.

df _doﬁl(y) A BdVi 04
dy_ dy ~Pay @9
do~(y) Bbie
= +A— . (25)
d do(V;
y 1+b; a(Vi)

v,

Some general properties bfand its derivative are thét)
B>0, whereasA and C can have either signiii)

71 . . _ . .
(Of course,o1(y) is undefined outside the open interval 47 ~(¥)/dy is symmetric abouy=1/2 (see Fig. 2, with

(0,2).) Hencef(y) runs from— to © asy runs from 0 to 1.

Sincef(y) is real and continuous, this implies that there is at
least one root and, in general, an odd number of roots, each

corresponding to a cortical steady state.

Aoy do i)
Im dy = |m7 dy =

y—0* y—1

*, (26)

If f hasN zeros and is continuous and differentiable, thenbecause of the properties @(y) discussed in Sec. Il Ajii)

df/dy must have at leasti—1 zeros. If we can show that

df/dy has no zeros, thehmust haveexactlyone. If we can
showdf/dy has at most 2, 4, etc. zeros, themust have at
most 3, 5, etc. zeros, respectively.

We can use Eq(16) to eliminateo(V;) from Eq. (17),

giving

f(y)=o~(y)+Ay—-BV;+Cgs, (20
b.ib;
A= ——=—Dee, (22)
bii
B=Dbei/bj, (22
b.ib;
C=—"_p,. (23)
bii
We then find

-1
do (y)>

dy 0 (27)

for all y; and(iv) the denominator of the term involvirgjin
Eqg. (25 is always=1 becauser(V;) is monotonically in-
creasing withV; (see Fig. }, i.e.,

do(V))
Y

>0. (28

We now use the above results to determine the maximum
number of roots of (y) in some special cases. ltf,b;.=0
and the otheb,,, are arbitrary, Eq(25) implies

df(y) do(y)
dy — dy

~Dee. (29)
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Equation(29) has either zero or two roots since the first term . I L L
on the right-hand side is strictly positive and has only a
single minimum (at y=3), while the second is constant.
Hencef(y) has at most three roots.

Equation(17) yields

di(y) _do My) | do(v)

fly).f.ly)

dy dy ei dy _bee- (30)

The first two terms in this equation are strictly positive, so it
has no roots ib,, satisfies 1t Se_ s

I: II -1

da-_l(y) -2
bee<—dy =0(1), (31 00 02 04 06 08 1.0
min
y

with the otherb,, arbitrary. In this casef(y) has exactly FIG. 3. Example of the behavior of the functiofis(y) (upper

one root. This can also be seen by noting that the sum of th@ashed curveandf_(y) (lower dashed curyedefined in Sec. Il E.

case, as is the third term; hence E&j7) has just one root. curve. Regions |, Il, and Ill discussed in Sec. Il A are labeled and
' ’ their boundaries are indicated by colons.

D. Conditions for the occurrence of various numbers 3. Necessary conditions for five or more roots

of steady states For f(y) to have five or more roots, all necessary condi-

Here we list several necessary or sufficient conditions fotions for three roots must be satisfied. In additidfi(y)/dy
the occurrence of one, three, or five or more roots. We willmust have a positive value at some point in zone Il between

apply these conditions to a specific versioneofn Sec. Ill.  the turning points of .. (y), as illustrated by the solid curve
in Fig. 3. This curve also shows that this is nosufficient
1. Sufficient condition for exactly one root condition.

A sufficient condition for there to be exactly one root is
that f(y) be monotonically increasing. This is certainly the Ill. PARAMETER DEPENDENCE OF STEADY STATES

case wherb,, satisfies Eq(31).
ee a3y When studying the dynamics of the cortex, stable steady

states sit in basins of attraction for adiabatic dynamics, while
unstable ones define the boundaries of these badihs is

A necessary condition for there to be at least three roots isimply a consequence of the dynamics under the influence of
that df(y)/dy be negative for somg and hence that this relevant “forces,” a concept that is made more precise in
quantity change sign at some point. Differentiation of Eqg.Sec. IV) Hence a key step in understanding cerebral dynam-

2. Conditions for three or more roots

(17) yields ics systematically is to characterize the regimes of parameter
space in which there are one, three, or five or more roots of
df do~ 1! bb.o (V. the ste:_ady—staje equaticﬁlh_?).. _ .
) -7 ) e L(') (32) In this section we specialize to the particular form of sig-
dy dy 1+bjio’ (V) moidal function used in our previous work and in the illus-

trative figures in earlier sectiorj4,8—10,15,1%

where primes denote differentiation with respecito The

first and last terms in Eq32) are non-negative, so a neces- (V)= 1 (33)

sary condition forf(y) to change sign is Eq31) with the " 1+exd —C(Vi—Vy)]’

inequality reversed, since the final term in EQ2) ap-

proaches zero at larg¥;|. whereC andV, are constants. The inverse @fis given by
The functionf(y) is bounded above and below by the

functions obtained by replacing(V;) in Eqg.(17) by 1 and 0,

respectively. We denote these functions, shown in Fig. 3, by

f(y) and f_(y), respectively. A necessary condition for

f(y) to have three or more roots is that the maximunf of  In the Appendix we show that this form of satisfies all the

be positive and the minimum df_ be negativesatisfied in  conditions assumed in Sec. Il.

the example in Fig. B A sufficient condition is that the We wish to study the dependence of the number of roots

maximum off _ be positive and the minimum df. be nega- on the parameters of our model, particularly tyg, andV,.

tive (not satisfied in the example in Fig).3 We do this in a simplified way by restricting the interrela-
If bjcbei=0, f(y) has at most three roots, as shown intionships between thé,,, on physiological grounds. This

Sec. Il C. reduces the dimensionality of parameter space, including

1
o} (y)= Vot liny—In(1-y)]. (34
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TABLE I. Classes of root structure df(y). The first column  Hence one-root and five-or-more-root zones of parameter
gives the category name, the numeral denoting the total number &pace can touch at most at a set of measure zero. Similar
roots (the minimum number in the 5 zond. The remaining three arguments regardindf(y)/dy imply that the JA zone can
columns list the numbers of roots in zones |, Il, and lll of Fig. 3, touch the three-root zone at most at a set of measure zero.
respectively. Class A has no turning points of.(y), SO it is  These and analogous arguments restrict the connectivities
categorized separately since zones I-lll are meaningless in thigetween zones to those shown in Fig. 5, which omits con-
case. nections of zero measure. The key significance of this figure
is that it constrains the paths that the system can take as its

Category ! . . dynamics evolve under the influence of adiabatic feedbacks.
1B 1 0 0 For example, no robust.e., insensitive to slight changes in
1C 0 0 1 parametersfeedback mechanism can carry the system from
1D 0 1 0 the five-root zone to the one-root zone without passing
3A 1 1 1 through the three-root zone.
3B 0 2 1
3C 1 2 0 B. Random connectivity model of synaptic densities
5* 1 3 1

In the simplest model for the development of interconnec-
tions between populations of inhibitory and excitatory neu-
rons, the number of connections is proportional to the num-
three dimensions corresponding to three indepentgit  ber of synapses availahl8,16,17. We term this theandom
The root structure is then studied as a function oftihgfor  connectivity modelbut stress that other possibilities are also
various values of the other parameters. The aim of this simegnsistent with current physiological knowledge. Suppose
plification is to obtain insight into a physiologically realistic excitatory neurons have fractiofig andf, , respectively, of
class of dynamical models. In future work we aim to com-the total numbers of axonal and dendritic synapses in the
pare the dynamics of these models directly with experimenteortex, while inhibitory neurons have fractions-1, and

1-fp. Suppose further that a fractierof all connections to
A. General topology of root structure cortical dendrites Originate outside the cortex. Then, assum-

W t not onlv to dist ish th b f stead ing random connectivities, the second column in Table II

€ want not only to distinguish the number of steady s the fractiondg=,, of connections from neuronal popula-
states of the cortex for specific parameters but to CIaSSIf¥i0n n to populationm, where the subscrig denotes sub-
whether these are solutions corresponding to i@gh(e.g.,. cortical origins. The third column lists the corresponding co-
seizure statgsor low Q. (e.g., normal cortical states in

: : . , . . efficients a,,, that appear in Eqs(9) and (10). These are
which neurons fire at far less than their physiologically maxi- 4 ined from thew ., via

mal valueg. We do this by counting the number of roots

between and beyond the pair of turning points faf(y) Frn

(zones labeled I, I, and Il in Fig.)3after separating off the amn= : (35
case wheref.(y) is monotonically increasing and these 2 Fmn

zones are undefined. This classification is crude in that the n

turning points are not fixed with respect to variations of the

bmn, but provides a useful coarse-grained categorizationS© that

This analysis also proves to be useful in constraining the

types of adiabatic dynamics that are possible in the system. 2 a. =1 (36)

We will see in Sec. IV thaf(y) has dynamical significance moon

beyond the positions of its roots: It is the gradient of an

effective potential energy function in a physiologically real- for all n. Equation(36) imposes a normalization that was

istic model of the cortex. neglected previously1,8—10,1%, but which is required to
We label the case wheife (y) is monotonically increas- ensure that inputs to neurons are correctly weigh(&tis

ing 1A, where the number denotes the number of roots andid not make a large difference in these earlier works, which

the letter is an arbitrary label for the subcategory. The variwere primarily concerned with excitatory effects and had

ous other cases and their category labels are given in TableX,a.,~0.9) This normalization applies to all models, not

where they are distinguished by the numbers of roots ijust the random connectivity model. One sees from Table I

zones |, Il, and IIl of Fig. 3. The possibilities listeglus  thata.,=a;, for all n in the random connectivity model.

class 1A) are exhaustive because the difference between In earlier sections, the,,, entered the cortical equations

f(y) and f _(y) is monotonically increasing, which means in the combinatiorb,,= gmnamn, Where theg,, were synap-

that there can only be one or zero roots ©f) in either zone  tic gains. This model is too simple to study dynamical feed-

Il or I, where f _(y) is also monotonically increasing. Fig- back, which can selectively affect the effective gain at syn-

ure 4 illustrates the appearancefdf) in each case. apses between particular populations of neurons rather than
As the underlying parameters 6fy) (e.g., theb,,, and at all synapses at once. We thus generalize it by noting that

V,) are changed, its roots appear or disappear in pairs. Thevery synaptic connection involves one neuron acting on an-

only exceptions occur at sets of zero measure in parametether. A reasonable physiological approximation to the gain

space where four roots can appear or disappear simultat a junction between an incoming neuron of population

neously or one pair can appear just as another disappeaend an outgoing one of population is thus to factorize it
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fy).fu(y)
f(y).fu(y)

f(y),fuly)
f(y),fuly)

f()’):f:t()/)
f(y).f.(y)
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FIG. 4. lllustration of the seven root structuresfgf) listed in Table I, plus the structure corresponding to claAs Bach case also
showsf. (y) as dashed curves and is computed using E2®. and (34) with by;=2.5 andb; =b;s=0. Not all cases correspond to the
random connectivity model of Sec. Ill Ba) 1A, with bg=b;c=2 andb.s=0. (b) 1B, with b,c=b;c=5 andb.s=0. (c) 1C, with b,
=b;.=5 andb.s=6. (d) 1D, with bg,=b;.=4 andb.,=1.8. (e) 3A, with b..=b;.=10 andb.,=0. (f) 3B, with b..=b;c=6.2 andb.
=1.3.(g) 3C, with boe=b;,=5 andb.=1.2.(h) 5%, with b,,.=b;.=8 andb,.=0.9.

into the product of an absolute strength| of the stimulus  apses, including any effects of dendritic signal attenuation.
per unit incoming signal and a strength of respohseer  The factorgs,| can be absorbed into th,,, without loss of
unit stimulus[16]. Physiologically|s,| is proportional to the  generality, but thd,,, must then appear explicitlln gen-
amount of chemical neurotransmitter released per unit ineral, the|s,| also incorporate different maximum firing rates
coming signal, whild ,, measures the net response at the celfor the various populations, which removes the need to nor-
body per unit concentration of neurotransmitter at the synmalize the sigmoidal functions to any value other than



3564 ROBINSON, RENNIE, WRIGHT, AND BOURKE PRE 58

dom connectivity model withr given by Eq.(33). We con-
sider three regimes, depending on the size of the tatlq.

1. General |/l

A sufficient condition for exactly one root to occur is that
f(y) be monotonically increasing. This is certainly the case
if f_(y) is monotonically increasing becaus€V;) in Eq.
(17) is a monotonically increasing function of (see Sec.

II C). Using Eq.(A4), we thus find that zoneA of param-
eter space satisfies

bee<4/C, (39)

which is the condition forf _(y) to have no turning points.

FIG. 5. Allowed connectivities between zones of parameterAll three-root and five-root zones must satisfy the reverse
space corresponding to the eight classes of root structure. Zones camequality.
bound one another in parameter space at a set of nonzero measureA further necessary condition for three roots to exist is
only if they are linked by a line in this diagram. that the maximum of . be positive and the minimum df_

be negative. Equationd7) and (A2) imply that the turning
unity.) This then leads to steady-state equations for thigoints off. (y) occur at
model of the same form as in previous sections, but Wijth
1 4 |12

replaced byl b, and y=5 li(l— _) } (39)

- (37) If bee>4/C, one then hag~1/Cb,., 1—1/Cbg., with the
le maximum of f.. occurring at the first of these two roots.
Substitution of this approximate value pinto Egs.(17) and
for all n. Hence, for a fixed ratid; /1, (only the ratio is an  (34) yields the following condition forf ; to be positive:
independent paramejeonly three of theb,,, are indepen-
dent in.this model. This simplifies the stgdy of its parameter bee<£exr{CVo— 1+ Cbgi— Chycs]. (40)
space in what follows. Note that there is no analog of Eq. C
(36) for the b,,, once they have incorporated ths,|.
Previous workg[1,8—10,15—-17 have argued on physi-
ological grounds thaa.. anda;. (equal in the random con-
nectivity mode) are larger than the othay,,,. Although we 1
do not impose such a restriction in the present work, we bee>={u+In[u+In(u+---)J}, (41)
consider maximal values db..=b;. that are larger than c
those of the otheb,,, in the specific numerical examples
discussed below.

For the minimum off _(y) to be negative, a similar analysis
to the above but foy~1 yields the requirement

u=CVy— Cb,epe+ 1. (42)

The upper bound(40) increases exponentially withV,
C. Parameter dependence of root structure whereas the lower bOUI’(@ﬁ-l) onIy increases Iinearly.
of the random connectivity model For five roots to occurf(y) must necessarily have a posi-

tive slope somewhere between the turning points_ofy).

he first two terms in the relevant expressi@2) are nega-
ve in total between the turning points 6f (y), while the
last peaks where' peaks, i.e., wher®; =V, ando’'=C/4
from the Appendix. Replacing the first term on the right-
hand side of Eq(32) by its minimum 4C and the last term

y its maximum value, a necessary condition for five or more
roots to occur is found to be

We can now apply the conditions discussed in Sec. Il E t
study the occurrence of various numbers of roots in the rans

TABLE II. Fractional synaptic densitie§,,, and the corre-
sponding coefficients,,,, from Egs.(9) and (10), calculated from
the random connectivity model. Excitatory neurons have fraction
f, and fp of cortical axonal and dendritic synapses, respectively,
while extracortical connections occupy a fractieof the total cor-

tical dendritic synapses. (1+b;;C/4)(bge— 4/C) < Chgibie/4. 43
mn Fimn 8mn On making the identificatio37) for the random connectiv-
ce (1— ) fafp (1—e)fx ity model, one finds thaj[ this requirement_cannot be satisfied
ei (1—&)(1—f)fp (1— ) (1-fn) for boe>4/C for any choice of; /I, so no five-or-more-root
zone can exist.
es efp €
ie (1-e)fa(1—Tp) (1-€)fa 2 1151
ii (1-e)(1-fa)(1-1p) (1-e)(1-fp) . . .
is e(1—fp) € If I;/1:>1 we can improve on the estimai3). Specifi-

cally, Egs.(14) and (37) imply that V; increases with; .
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ee
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bes¢s

FIG. 6. Root structure as a function of parameter space for the random connectivity modé}with C~1.81, and; /I,=4. The zones
from Table | are shown as functions bf.¢ andb,. for variousb,;. In order of increasing darkness the zones ake 1B, 1C, 3A, and

3B. Small irregularities in the boundaries between zones are artifacts of the numerical calculations. The analytic bounds of the three-root

zone, Eqs(40) and(41) with Eq. (44), are shown for comparison as solid curve.b.;=0, (b) be;=5, and(c) bg;=10.

Hence, for sufficiently largd;, V; exceedsV, and f(y) necessary and sufficient conditiofgy) >0 at the left turn-
~f,(y) over most of the range iy, particularly at largey ing point of f and f(y)<0 at the right turning point. 1bg,
wheref has a minimum. Similar arguments to those leading—b.;>4/C these conditions become

to Eq. (41) then imply that the three-root zone satisfies Eq.
(41), but with

1
bee— bei>={u+In[u+In(u+---)]}, (46)
U=CV+ 1+ Cbgi— Cbegps. (44) ee Pl '

Figure 6 shows the one-root and three-root zones as func- —CVat+1— 4
tions of besps and b, for three values ob,;, V=3, and u=CVo Chests, S
I, /1.=4. The conditiong40) and(41) with Eq. (44), shown
for comparison, are seen to provide reasonable estimates of 1
the boundaries of the three-root zotathough the upper beebei< s eXH CVo— 1~ Chesos]. (48)

bound errs significantly on the high side for latyg), while
the boundary of zone A is consistent with Eq(38). The
connectivities between the various subzones are seen to
cord with Fig. 5, although there are no zones of tyje dr
3C in this case. The cade,;=0, shown in Fig. 6), corre-

aIéguation(48) and the restrictiom,.— be;>4/C immediately
imply the condition

sponds to a purely excitatory network of cortical neurons. Pesths<(CVo—1-In4)/C (49
This case has been previously studied with equivalent results
[1]. on the three-root zone and hence
3.1 /.=1
Vo>(1+1In4)/C (50)

A number of simplifications follow if we specialize to the
casel;/l.=1. Most importantly, Eqs(13)—(15) imply V.

=V,=0"Y(y). Hence we find for three roots to exist for positiveeps.

Figure 7 shows the one-root and three-root zones as func-

f(y)=0"y)— (Dee—be))y — Dests. (45)  tions of besps and b, for two values ofbg;, Vo=3, and
I;/1.=1. The conditiong46) and (48), shown for compari-

This function has the same functional form fis(y) and  son, are seen to provide very good estimates of the bound-

hence can have only zero or two turning points and one oaries of the three-root zone, while E@9) is also satisfied.

three roots. In this special case there are turning points onbjs in Fig. 6, the connectivities between the various zones are

for bee—be;>4/C and then the three-root zone satisfies thein accord with Fig. 5.
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be5¢s bes¢5

FIG. 7. Root structure as a function of parameter space for the random connectivity modé}with C~1.81, and; /l.=1. The zones
from Table | are shown as functions bf.¢s andb,. for variousb,;. In order of increasing darkness the zones ake 1B, 1C, 1D, 3A,
and 3B. Small irregularities in the boundaries between zones are artifacts of the numerical calculations. The analytic bounds of the three-root
zone, Eqs(46) and(48), are shown for comparison as solid curves.b.;=5 and(b) b,;= 10.

4.1 .=<1 Eq. (8). If we specialize to adiabatic dynamics with time
In this casev; <V, and inhibitory neurons thus have little scales much longer than the dendritic integration time con-

-1 =1
effect on the cortical dynamics. The resulting root structure>i@ntse = and 8~~, Egs.(5)—(7) are replaced by Eq11).

is very close to that of Fig. (@), with only a very weak FOFli=le 0ne also ha¥;=Ve, Q;=Qe, andQqi=Qae-
dependence oh;. We introduce the notation

1(d? d
IV. GLOBAL CORTICAL DYNAMICS Dei= 5| gz T 2Yeig Yeil- (51
Yeii

OF THE RANDOM CONNECTIVITY MODEL

Many cortical phenomena occur on spatial scales compaNoting thaty; is extremely large for typical cortical param-
rable to the whole cortex and on time scales much longegters[1], we can make the local inhibition approximation
than those of dendritic integration in individual neurons orp,~1 [1], which yields¢;=Q,=Q, via Eq. (8). Using Eq.
even the faster cortical rhythnta few tens of milliseconds  (8) again we find
In particular, there are slow rhythmso-called delta and

theta rhythms and so-called slow waves, which are pro- Detpe= Qe (52
longed deviations of cell potential without oscillatory com-

ponents. These typically have time scales of 100 ms or =0(Ve) (53
longer[13], as do chemical feedback mechanisms that modu-

late the overall state of the cortex. Similarly, the evoked =0(9Qae) (54
response potentials that follow a stimulus have time scales of

several hundred milliseconds and are known to involve con- = 0(beetpe— DeiQet bests), (55

ditioning over even longer period43]. Previous theoretical

work has also shown that the globally uniforik=0) mode  where Eqgs(1), (9), and(11) and the local inhibition approxi-

is the least stable or most unstable and hence it is likely ténation have been used in obtaining E¢s3) and (54). We

play a significant role in the dynami¢§]. have also writterb,,,=9mamn in Eg. (55), as in previous
In this section we use the results of the preceding analysisections, but now reinterpret tlig,, in the generalized way

as the groundwork to treat large-scale cortical dynamics ointroduced in Sec. Il Bi.e., theb,,, incorporate the stimu-

long time scales. In the future, this treatment will form thelus strengths,|).

basis of understanding adiabatic control of the cortical state If we rewrite Eq.(55) usingy=Q.=o(V,), as in previ-

via feedback or external stimuli. We specialize to the case obus sections, a comparison with E§2) yields

spatially uniform (globa) dynamics on time scales much

longer than those the dendritic integration time~e10 ms. 0" (Y)=beepe— Deiy + beshs (56)

In Sec. IV A we derive the relevant equations of motion for

the random connectivity model with/I,=1, which yields and hence

closed-form analytic results. Section IV B treats linear dis-

persion and stability, reproducing and generalizing previous

results in the adiabatic regime. Numerical results in Sec. h(v)= o

IV C illustrate these results by applying them to large-scale (¥)= 0 (y) +beiy ~besdbs.

dynamics and to the cortical response to sinusoidal variation

Deh(y) =begy, (57)
(58

: Equation (57) is equivalent to the motion of a Newtonian
of ¢bs. particle under the influence of both frictional and conserva-
tive forces, as can be seen by writing it in the form
A. Adiabatic global cortical dynamics
2
The equations of global cortical dynami¢&CD) are d*h(y) _ dh(y) Ty _
those of Sec. Il A, with the deletion of the Laplacian term in dt? 2%e dt VelPeey ~N(Y)]. (59
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The first and second terms on the right-hand side of(&9).

represent frictional and conservative forces, respectively.

The fixed points of Eq(59), representing the steady states of
the system, coincide with the roots of the functidy) dis-
cussed in previous sections sin€gy)=h(y)—b.y. The
function f(y) is thus proportional to the conservative part of
the force, but has the opposite sign.

If friction dominates, accelerations are small and &§)
can be simplified to

dy  yelbesy—h(y)]
dt~ Jdo Xy) (60
2| ——= 1 by
dy

Equation(60) has the same fixed points as Ef9) and its
denominator is positive definite.

It is possible to formulate Eq59) in terms of a potential
U(h) via

h
U(hr=v;L[h’—bayuvndhz (62)
0
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FIG. 8. PotentialU(h) vsy, given by Eq.(67) for the random
connectivity model withb,.=5, b,;=0, andb,s¢$s=0.3, near the
boundary between zone?A3and 1B in Fig. 6(a).

the potential at the maximum, leaving only the left-hand
minimum. Likewise, the boundary of zoneClcorresponds
to the central maximum falling below the left-hand mini-
mum, leaving only the right-hand minimum.

Formulation of GCD in terms of a potential emphasizes
the physical requirement that fixed points of the system must
alternate between stable and unstable in chargapart from

wherehg is an arbitrary reference point, which we place atdegenerate cases of multiple coincident rootd (f) ]: Be-

hy=0, andh’ is a dummy variable. The inversgh) exists
and is unique becausth/dy is positive definite. Integration
by parts yields

2
Ye

U(h)= 5| h?~2bed

y
hy—J;h<y»dyj}, 62

wherey,=Yyo(hg) andy’ is a dummy variable. If we substi-
tute the explicit form(34) for o~ 1(y) into Eq.(58), we find

2
_%

U=

hz_ 2bee hy+ (besd’s_ VO)(y_ yO)

Dei 1
— 5 (¥*=y3) ~ sLyiny=yolnyo

+(1—y)ln(1—y)—(1—yo)ln(1—yo)]]}, (63

yy).

with

= (64)

1

It is worth noting thatJ(h) in Eq. (63) is measured rela-
tive to a pointh, that depends on the,,,. Since the zero of

tween any two minimums obl(h) there must be a maxi-
mum. Moreover, the first and last fixed points must be stable
or else the system would have additional fixed points at in-
finite Vi, which is a contradiction. These conclusions are
not restricted to the random connectivity model with
=1, but hold for general forms of and arbitrary coeffi-
cientsb,,, for the same physical reasons.

B. Linear dispersion and stability

In the case of small perturbations from a fixed paint
Eqg. (57) can be Fourier transformed to yield the linear dis-
persion equation

2
'}’ebee

Tdo Yy
Tay  Pe

(Ye—iw)? (65)

where the notation in Eq65) indicates that the derivative of
o~ (y) is to be evaluated at;. This result reproduces Eq.
(55 of Ref.[1] for zero wave numberk=0), I;=1., and
be;i=0, although this earlier result was in a somewhat differ-
ent notation.

The instability threshold of a fixed point can be calculated
from the point where the imaginary part af is zero[1].
Hence we find that instability occurs for

U is arbitrary, one can always reexpress it relative to a point

that does not depend on the,,, or V,. Specifically, if one
chooses this point to be the unique point whiage= 0 when
all theb,,, are zero and/,=0, one must usg,=1/2 in Eq.
(63).

Figure 8 shows an example bf(h), plotted againsy, in
zone A of Fig. 6(a), near the boundary with zoneB1 Note

do(yy)

bee> dy

+Dbg;. (66)

This result generalizes E¢67) of Ref.[1] to nonzerdo,; for
l;=1¢ andk=0. It confirms physical intuition in that feed-
back from the inhibitory neurons to the excitatory ones raises

the two minimums, corresponding to the stable fixed pointsthe instability threshold.

and one maximum at the unstable fixed point. The diver- Sufficiently strong in-phase feedback of a subject's EEG
gences olJ(h) asy—0,1 prevent the system from reaching (by allowing it to modulate a flickering light source in their
these points. As the boundary of zonB I approached and field of vision, for example will rapidly induce a seizure
crossed, the right-hand minimum potential rises to exceefl18], as will chance correlations of external flicker with EEG
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FIG. 9. Comparison of the dynamics for the full and adiabatic GCD equations for a random connectivity model systbg=+80
bei=3, andb,.ps=0.3. The solid line shows the full result far= 8=400 s %, while the dotted and dashed lines show results from the
first-order approximatior(60) and the second-order approximati¢dO), respectively.(@) System initialized withy=0.05. (b) System
initialized with y=0.005.

signals[18,19, so-calledphotic epilepsy. This implies that initial steep transient, followed by very similar behavior to
the instability threshold66) has been lowered. We can esti- the other solutions. The time evolution is very similar apart
mate the threshold for such feedback-induced seizures biyom a few milliseconds lag between the curves. Figui® 9
replacinge, in Eq. (58) by A€ ¥(y—y;), whereA andy are  shows results for the same system as in Fig), &xcept that
real constants representing the amplitude and phase of thiewas initialized below the lowest fixed point. In this case,
feedback signal. After linearizing the resulting equation, wethe three solutions are again similar after40-ms transient
find a dispersion equation of the forf@5) with the replace- in the full solution, converging smoothly toward the fixed
ment point. Neither Eq{(59) nor Eq.(60) shows clear superiority
) over the other in this case.
bei—bei—beA€”. (67) The adiabatic approximation made in deriving E(59)
and (60) depends orx (= B) being larger than the inverse
time scale of the global dynamics. Figure 10 shows the effect
do(yy) of varying @ over the rangel000—100 s'. In each case
bee>d—y +bei—beA cogs, (68 the system is the same as in Fig. 9, except that it is initialized
slightly above the lowest fixed point. Far>200 s !, Egs.
where the minimum threshold occurs@t0. The threshold (59 and(60) give reasonable approximations to the dynam-
is lowered relative to Eq(66) for in-phase feedback and €S in this and other examples |r_1vest|gated, in a_ccord with
raised for feedback that is out of phase. As one might physical expectations. Again, neither approximation can be
expect, the effect of feedback that i out of phase is strongly preferred on the grounds of accuracy.
equivalent to increasing,;, the coefficient that describes ~ Figure 11 shows a further comparison of the full GCD
the effect of inhibitory neurons on excitatory ones. Seizuré2duations with the approximatiori§9) and (60). In these
induction, as well as the variation of its threshold wih ~ 'esults, a 10% sinusoidal modulation ¢f was superposed

provides a potential experimental test of the theory presente@? & mean value of unity. The figure shows that H§S)
here and in previous workd.,16]. and(60) give good approximations to the actual behavior for

frequencies below about 10 Hz, consistent with the results in
Figs. 9 and 10. At higher frequencies, the first-order result
(60) greatly underestimates the amplitude of the oscillations
Figure 9 compares solutions of the full GCD equationsrelative to the full result, indicating that high frequencies are
including the effects of dendritic integration for realistic more strongly damped in the corresponding adiabatic disper-
physiological valuesx= =400 s * in Egs. (5)—(7), with  sjon equation than in the full one. The second-order result
the first- and second-order adiabatic approximatiG®and  (59) gives a good approximation to the dynamics for fre-
(59). The parameters correspond to a point in zoAevBth  quencies<30 Hz, with an upper bound to its regime of
two stable fixed points separated by one unstable one. In thiglidity of 10—20 Hz fora=100 s . This upper bound is
case, Eqs(5)—(7), (9), and(10) are replaced by not a significant limitation since the adiabatic approximation
is not intended to be valid at frequencies above about 10 Hz

Instability occurs for

C. Nonlinear dynamics and the effects of dendritic integration

d2 . . —
W+2aﬁ+ @2 | Vo= a?[ (Doe— Dei) he—besps]  (69) 1N ANY Case and only applies far=100 s*.
for I,=1.. Figure 9a) shows a case where the system is V. SUMMARY

initialized in the basin of attraction of the highest fixed point,

which corresponds to a seizure state, but near the middle In this work we have investigated the steady states and
(unstable fixed point. The full GCD equations and E{59) global dynamics of our recent continuum model of electrical
and (60) all imply that the system accelerates to larger activity in the cerebral cortex, generalized to allow for dif-
before approaching the highest fixed point asymptoticallyferent effective gains at synapses between different popula-
with t. The full solution, including dendritic effects, has an tions of neurons. Particular attention has been paid to the
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FIG. 10. Effect ofa (=) on the agreement between the full and adiabatic GCD equations for the same system as in Fig. 9, but
initialized with y=0.025. The solid line shows the full result, while the dotted and dashed lines show results from the first-order approxi-
mation (60) and the second-order approximatii®9), respectively(a) «=1000 s*. (b) «=400 s1. (c) «=200 s!. (d) «=100 s,

steady states of the system and to adiabatic global dynamicsiodels can have at least five, although we have not yet

General criteria for the occurrence of various numbers ofound any cases with more than five, despite searching ex-
cortical steady states have been found. In the case of outensively. The regions of parameter space in which various
numbers of roots occur have been studied for this model and

previously used sigmoidal functid83), a maximum of three

roots can occur for the random connectivity modether

0.0180F
0.0170¢

> 0.0160EF}

0.0150 F

0.0140F
0.0130E

0.0

0.0180
0.0170
>~ 0.0160]
0.0150 f

0.0140F
0.0130E

0.00

0.10

0.20
t (s)

0.30

0.40

>~ 0.0160¢

0.0180

0.0170

> 0.0160 £/

0.0150 F
0.0140F
0.0130k : : .

0.00 0.10 0.20 0.30
t (s)

0.0180F
0.0170F

0.0150

0.0140F
0.0130E . . .

0.00 0.05 0.10 0.15 0.20 0.25 0.30

t (s)

their boundaries have been found to be consistent with the

FIG. 11. Comparison of the full and adiabatic frequency responses of the same system as in Figs. 9 and 10, where a 10% sinusoidal
modulation has been added ¢a. The solid line shows the full result, while the dotted and dashed lines show results from the first-order
approximation(60) and the second-order approximati@$), respectively(a) Modulation at 3 Hz(b) Modulation at 10 Hz(c) Modulation
at 30 Hz.(d) Modulation at 50 Hz.



3570 ROBINSON, RENNIE, WRIGHT, AND BOURKE PRE 58

analytic criteria obtained here. important as feedbacks and must be included simultaneously
For a particular case of our model, in which the charac4in any attempt to obtain a detailed understanding of cortical
teristic response strengths of excitatory and inhibitory neuwaves and EEGs. Nonetheless, spatially uniform modes in-
rons are equall(=1.), Egs. (59) and (60) have been ob- clude the least damped cortical responses and are thus likely
tained as approximations to the full GCD equati¢bs (5)—  to contain the largest spectral response to complex or noisy
(10), and(33) with V? replaced by zero in Eq8). Equation  cortical inputs.
(59), a second-order equation, is equivalent to the equation
of motion of a Newtonian particle in a potential in the pres- ACKNOWLEDGMENTS
ence of friction. Equatiori60) applies in the case that fric- ] ] )
tion dominates the dynamics. We have obtained explicit 1he authors thank M. Roy for preparing Fig. 5. This work
forms for the potential and force functions, allowing us toWas supported by the Ross Trust, Melbourne, and the Aus-
characterize the basins of attraction of the steady states. tralian Research Council.
The approximate linear dispersion relati(b) general-

izes the results of previous woifld] to include inhibitory APPENDIX: VERIFICATION
effects more fully in the adiabatic limit fok=0. Stability THAT THE REQUISITE CRITERIA ARE SATISFIED
boundaries are also generalized to include the effects of in- BY THE SPECIFIC FORM (33) OF o

hibition and direct feedback of cortical signals as input. The ; ; : .
results confirm that inhibition raises the instability threshold, In this appendix we verify that the form of used in our

while feedback can either raise or lower it depending on igrevious work has all the properties required in Sec. II. The
: . P 9 sigmoidal function we have used and its inverse are given by
phase relative to the signal.

) . . . gs.(33) and(34). We find the following results by repeated
Numerical results have confirmed that the adiabatic GCDEifferentiation of these expressions:

equations approximate the full ones adequately for dendritic

integration times in the physiologically observed range, pro- da(V;)

vided the characteristic time scales of the dynamics are gy~ Col-o), (A1)

longer than about 100 ms. The response to sinusoidal modu- '

lations of the system is also found to agree well for frequen- d2o (V)

cies below about 10 Hz. _ _ _ Wzl—zczo'(l—o')(l—Z(r), (A2)
The results obtained here provide the basis from which to i

address the effects of feedback on large-scale cortical dy- 3

namics in future work. Steady states are the most fundamen- da (Vi)

tal features of the dynamical system. Their basins of attrac- dVi3

tion can evolve as a result of the feedback mechanisms that

are known physiologically to operate on the cortex, thereby do Yy) 1/ 1 1

allowing for more complicated dynamics, possibly including dy -c 1-y + )_, '

limit cycles or chaotic evolutioitwhich may, of course, also

occur on faster time scales as a result of voltage-dependent e Yy) 1 1 1

changes in ionic conductivities of neuronal membranes, for > = E( T-v)2 —2),

example¢. Many features of EEGs are large scale and occur dy (1=y)" y

in the adiabatic temporal regime. These include evoked re- 5 1

sponse potentials, the alpha, delta, and theta rhy{Hii8f dco(y) 2 1 N 1

the characteristic “spike and wave” signal of petit mal sei- dy?  Cl(a-y)°® y¥)

zures[13], and the progression of grand mal seizur&3].

The present work thus promises to have wide application in  The above expressions satisfy our requiremé2jts(4) in

interpreting phenomena such as these and in determining ti&ec. Il A. It is straightforward to show that the expression in

relevance of our model to such situations. Even when feedeqg. (Al) is non-negative and has a single peak, about which

backs and dynamics are not adiabatic, they occur against thieis symmetric. All the derivatives shown are well defined

background of the instantaneous fixed points and their basirend continuous in the relevant ranges. The maximum of Eq.

of attraction that still constrain the dynamics. One further(Al) is of order unity forC of order unity and 8<o<1.

effect that must be incorporated is the existence of spatially We now turn to the additional criteria in Sec. 1l C. We

nonuniform eigenmodes and the resulting nonlinear modefind that Eq.(A4) is indeed symmetric aboyt=1/2 and that

mode interactions. Such interactions are likely to be just aggs. (26)—(28) are satisfied.

=C3¢(1-0)(1-60+602), (A3)

(Ad)

(A5)

(A6)
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