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Steady states and global dynamics of electrical activity in the cerebral cortex

P. A. Robinson,1,* C. J. Rennie,1,2,† J. J. Wright,3,‡ and P. D. Bourke3,§
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Steady states and global dynamics of electrical activity in the cerebral cortex are investigated within the
framework of a recent continuum model. It is shown that for a particular physiologically realistic class of
models, at most three steady states can occur, two of which are stable. The global dynamics of spatially
uniform activity states is studied and it is shown that in a physiologically realistic class of models, the adiabatic
dynamics is governed by a second-order differential equation equivalent to that for the motion of a Newtonian
particle in a potential in the presence of friction. This result is used to derive a simplified dynamical equation
in the friction-dominated limit. Solutions of these equations are compared with those of the full global dynam-
ics equations and it is found that they are adequate for time scales longer than approximately 100 ms provided
dendritic integration times are less than approximately 10 ms.@S1063-651X~98!12908-2#

PACS number~s!: 87.22.Jb, 87.22.As, 87.10.1e
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I. INTRODUCTION

Recently we developed a continuum model for the pro
gation of electrical activity in the cerebral cortex@1#. This
model traced the evolution of quantities such as the neur
firing rate, averaged over volumes large enough to con
many neurons, as in several previous works@2–12#. Both
excitatory and inhibitory neuronal populations were
cluded, as were the effects of nonlinear neural respon
temporal integration in the dendrites, and propagation t
delays in the axons. This model allowed us to write do
equations for dynamics, steady state solutions, and dis
sion and stability of linear waves.

The above model did not include the effects of feedba
on the basic parameters of the cortex, such as the thres
potential for neuronal firing, and the effective strengths
coupling between various neuronal populations. Such fe
backs are known to be of central importance in the dynam
of the actual cortex: The state of arousal~e.g., relaxed vs
alert! strongly affects the cortical response to stimuli as m
sured by electroencephalograms~EEGs!, for example@13#.
Such responses are normally termedevoked response poten
tials. These responses depend not only upon fast cor
responses on time scales well below 100 ms~e.g., voltage-
dependent changes in ion conductivities of neuronal m
branes!, but on feedbacks that evolve over longer interv
~e.g., the action of chemical neurotransmitters! @14#. In gen-
eral, we take feedbacks to include any modulation of cort
parameters that depends on the cortical state and/or its
tory.

Another area in which feedbacks are of importance is
the onset and termination of seizures. It is likely that t
cortex operates in a state close to marginal stability@1# so as
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‡Electronic address: jjw@mhri.edu.au
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to be stable, but not so stable that all interesting behavio
suppressed. Normal subjects are not prone to spontan
seizures, whereas in epilepsy, for example, the cortex
undergo a transition to a seizure state in which all the n
rons are firing far above their normal rate. Such seizures
not permanent: Some feedback mechanism~or combination
of mechanisms! acts to return the brain to its normal sta
after seconds or minutes@7,13#.

The purpose of the present work is to understand be
the steady states and global dynamics of a generalized
sion of the model introduced in our previous work@1#, an
essential step prior to incorporating feedbacks in fut
works. In Sec. II we study the possible steady-state soluti
of the generalized model, deriving a steady-state equa
and limits on the maximum number of steady states in c
tain cases. Apart from being the simplest and most fun
mental solutions of the model, these steady states and
basins of attraction determine the qualitative dynamics in
absence of feedback and provide strong constraints on
dynamics more generally for slow feedbacks. In Sec. III
study how the steady states and their interrelationships
pend on the underlying parameters of the model, demons
ing that a class of models that is particularly plausible phy
ologically has simple properties in this respect, possess
only three steady states.

Many observations of electrical activity in the cortex a
made at relatively coarse spatial scales. EEGs, for exam
often use scalp electrodes separated by several centime
while most short-scale features are filtered out as a resu
the conductivity of the cerebrospinal fluid, skull, and scalp
any case@7#. In addition, Robinsonet al. @1# showed that the
longest-wavelength eigenstates are the least damped and
are likely to contain the most spectral power when the cor
is driven by noise or complex inputs. Hence, in Sec. IV w
study the large-scale dynamics of the cortex. Furtherm
we do this in a simplified way by specializing to adiaba
dynamics, which we define to be dynamics on time sca
much larger than the dendritic integration time of order 5–
ms @1,5#. We show that the spatially uniform global dynam
3557 © 1998 The American Physical Society
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3558 PRE 58ROBINSON, RENNIE, WRIGHT, AND BOURKE
ics of the cortex can be described by an equation tha
equivalent to that of a Newtonian particle moving under
influence of friction in a potential whose minimums defi
the stable steady states of the system. When friction do
nates it is also possible to write down a simplified first-ord
equation for the adiabatic dynamics in the governing pot
tial. Numerical results show that these adiabatic equati
approximate the dynamics well for time scales exceed
;100 ms. In future work, extension of these equations
incorporate adiabatic feedback will enable the qualitative
namical effects of various types of feedback to be de
mined by looking at their effects on the potential and t
resulting ‘‘forces’’ on the system. This ability is relevant
any analysis of feedback processes that adiabatically mo
the basins of attraction of the steady-state solutions of
dynamical equations. Faster feedback mechanisms also i
act with the basins of attraction, but an adiabatic approxim
tion is not possible.

It should be stressed that real cortical electrical activ
involves spatially nonuniform eigenmodes, as well as
spatially uniform ones studied here. Inclusion of the
modes, and the corresponding nonlinear mode-mode inte
tions, along with feedback, will also be essential in any f
understanding of cortical waves and EEGs.

II. STEADY STATES OF THE CEREBRAL CORTEX

In this section we categorize the steady-state solution
our dynamical model of the cortex@1#. In Sec. II A we
briefly review the dynamical equations themselves. Sec
II B generalizes our earlier fixed-point analysis@1# and de-
rives a single fixed-point equation whose solutions determ
the steady states. Section II C discusses the fixed poin
general and in some special cases where their number
strictly limited. Finally, necessary conditions for the occu
rence of multiple stable steady states are derived in Sec.
The mathematical analysis presented in the latter parts of
section is essential to the understanding of the physical
haviors studied in Secs. III and IV.

A. Dynamical equations

In this section we first outline the main relevant results
our recently developed wave-equation formulation of co
tinuum cortical dynamics@1#. In a previous paper@1# we
developed a set of nonlinear equations for cortical dynam
in the continuum limit. These equations incorporated exc
tory and inhibitory neurons, dendritic integration of inputs
a given neuron, finite axonal propagation velocities, and
nonlinear relationship between inputs to a neuron and
firing rate. In all cases, the dynamical quantities are assu
to be averaged over a volume large enough to contain m
neurons but very small relative to the whole cortex. T
continuum approximation is easy to justify as there
;1010 neurons in the cortex. Other continuum analyses h
been carried out previously@2–12#, with some authors ob
taining linear or nonlinear wave equations as a res
@6,7,11,12#, but we restrict attention here to the analysis o
generalization of our previous model@1#.

The first of the central equations of our model is

Qe,i5s~Ve,i !, ~1!
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which relates the mean firing ratesQe andQi of neurons~the
pulse densitiesin neurophysiological terminology! to the ap-
plied potentialsVe andVi , wheree and i denote the excita-
tory and inhibitory populations. The functions(x) repre-
sents the fraction of neurons that will fire at or below
incident potentialx; we assume that it is the same monoto
cally increasing function for both neuronal populations, w
the properties

lim
x→2`

s~x!50, ~2!

lim
x→`

s~x!51. ~3!

In general,s can be written in the form

s~x!5E
2`

x

s8~u!du, ~4!

where s8(u) is a non-negative, singly peaked, integrab
bell-shaped function, which we will assume to be symme
about its peak. We also assume that the first few derivat
of s and its inverse are continuous. If we work inVe,i units
in which the full width at half maximum ofs is of order
unity, we can conclude that the maximum ofds(Ve,i)/dVe,i
is also of order unity, since Eqs.~3! and~4! must be satisfied.
Figure 1 shows an example ofs and its first three derivatives
@the specific form used is the one employed in Secs. III a
IV, defined by Eq.~33! below#.

The quantityVe,i is defined to be the neuronal potential
the cell body where conversion to neuronal pulses ta
place after inputs have been summed and filtered through
dendrites. A good approximation toVe,i is given by@1#

Ve,i5ge,i

ab

b2a
@Ue,i2We,i #, ~5!

dUe,i

dt
5Qae,ai2aUe,i , ~6!

dWe,i

dt
5Qae,ai2bWe,i , ~7!

whereQae,ai represent mean arrival rates of input pulses
the dendrites,ge,i are dendritic gain factors, anda andb are
constants parametrizing the dendritic response to an impu
In effect dendritic propagation smears out the temporal
sponse over a time scale;max$a21,b21% and the dendritic
tree acts as a low-pass filter. Equation~5! generalizes our
previous corresponding equation@1# by allowingge andgi to
differ.

Outgoing pulses from each neuron propagate along
axon and axonal tree at a characteristic velocityv. Assuming
an isotropic distribution of axons with approximately exp
nentially distributed ranges~see Ref.@1# for the exact distri-
bution!, this propagation can be modeled by a wave equa
for the corresponding potentialsfe,i :

S ]2

]t2 12ge,i

]

]t
1ge,i

2 2v2¹2Dfe,i5ge,i
2 Qe,i , ~8!
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FIG. 1. Example of the functions(Vi) and its derivatives with respect toVi , as calculated from Eqs.~33! and~A1!–~A3!: ~a! s(Vi), ~b!
first derivative,~c! second derivative, and~d! third derivative.
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wherege,i5v/r e,i andr e,i are the characteristic ranges of th
axons@1#.

The incident potentialsQae,ai at a particular location com
prise contributions from the wave potentialsfe,i and inputs
fs from outside the cortex. This leads to the final underlyi
equations of our model:

Qae5aesfs1aeefe2aeif i , ~9!

Qai5aisfs1aiefe2aii f i . ~10!

Here the constantsamn are the fractional synaptic densitie
associated with excitatory, inhibitory, and subcortical inp
fe,i ,s to excitatory and inhibitory neurons. A change of n
tation from some of our previous work@1,15# is thatfs now
represents all external inputs to the cortex, thereby com
ing the quantitiesQs and Qns used previously@1,8–10# to
denote time-varying and static inputs, respectively. The
efficientsaes,is also subsume the four coefficientsMe,i and
me,i that previously parametrized the contributions of tim
varying and static inputs. Normalizations of theamn are dis-
cussed in Sec. III B.

B. Steady state equation

If we set all the time derivatives in Eqs.~6!–~8! equal to
zero and, furthermore, seek spatially uniform solutions
these equations, we find

Ve,i5ge,iQae,ai , ~11!

fe,i5Qe,i , ~12!
s

n-

-

-

f

with Eqs.~1!, ~9!, and~10! unchanged, except thatfs is now
understood to be the time- and space-independent compo
of fs . Equations~1! and ~9!–~12! now yield

Ve5besfs1bees~Ve!2beis~Vi !, ~13!

Vi5bisfs1bies~Ve!2bii s~Vi ! ~14!

after eliminatingfe,i , Qe,i , and Qae,ai , and writing bmn
5gmamn(>0) for compactness. Equation~14! implies

Ve5s21~y!, ~15!

y5
1

bie
@Vi1bii s~Vi !2bisfs# ~16!

(y5Qe). This solution is unique because we find that t
right-hand side of Eq.~16! is monotonically increasing with
Vi . Hence there is a unique value ofs(Ve) for any value of
Vi . The functions(Ve)5y is also monotonically increasing
with Ve ~i.e., it is one to one!, so there is a unique inverseVe
in Eq. ~15!.

If we substitute Eq.~15! into Eq. ~13! we find that the
steady-state values ofy are given by the roots off (y), with

f ~y!5s21~y!2beey1beis~Vi !2besfs . ~17!

Steady state values of other variables then follow from
application of Eqs.~1!, ~9!–~12!, and ~15!. The following
subsections are concerned with the properties of Eq.~17! and
its roots.
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FIG. 2. Example of the functions21(y) and its derivatives with respect toy, as calculated from Eqs.~34! and~A4!–~A6!: ~a! s21(y),
~b! first derivative,~c! second derivative, and~d! third derivative.
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C. Number of steady states

Looking at Eq. ~17!, we note thaty and s(Vi) are
bounded on the interval~0,1!, whereass21(y) is unbounded
~see Fig. 2!, with

lim
y→12

s21~y!5`, ~18!

lim
y→01

s21~y!52`. ~19!

„Of course,s21(y) is undefined outside the open interv
~0,1!.… Hencef (y) runs from2` to ` asy runs from 0 to 1.
Sincef (y) is real and continuous, this implies that there is
least one root and, in general, an odd number of roots, e
corresponding to a cortical steady state.

If f hasN zeros and is continuous and differentiable, th
d f /dy must have at leastN21 zeros. If we can show tha
d f /dy has no zeros, thenf must haveexactlyone. If we can
showd f /dy has at most 2, 4, etc. zeros, thenf must have at
most 3, 5, etc. zeros, respectively.

We can use Eq.~16! to eliminates(Vi) from Eq. ~17!,
giving

f ~y!5s21~y!1Ay2BVi1Cfs , ~20!

A5
beibie

bii
2bee, ~21!

B5bei /bii , ~22!

C5
beibis

bii
2bes. ~23!

We then find
t
ch

n

d f

dy
5

ds21~y!

dy
1A2B

dVi

dy
~24!

5
ds21~y!

dy
1A2

Bbie

11bii

ds~Vi !

dVi

. ~25!

Some general properties off and its derivative are that~i!
B.0, whereas A and C can have either sign;~ii !
ds21(y)/dy is symmetric abouty51/2 ~see Fig. 2!, with

lim
y→01

ds21~y!

dy
5 lim

y→12

ds21~y!

dy
5`, ~26!

because of the properties ofs(y) discussed in Sec. II A;~iii !

ds21~y!

dy
.0 ~27!

for all y; and~iv! the denominator of the term involvingB in
Eq. ~25! is always>1 becauses(Vi) is monotonically in-
creasing withVi ~see Fig. 1!, i.e.,

ds~Vi !

dVi
.0. ~28!

We now use the above results to determine the maxim
number of roots off (y) in some special cases. Ifbeibie50
and the otherbmn are arbitrary, Eq.~25! implies

d f~y!

dy
5

ds21~y!

dy
2bee. ~29!
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Equation~29! has either zero or two roots since the first te
on the right-hand side is strictly positive and has only
single minimum ~at y5 1

2 ), while the second is constan
Hencef (y) has at most three roots.

Equation~17! yields

d f~y!

dy
5

ds21~y!

dy
1bei

ds~Vi !

dy
2bee. ~30!

The first two terms in this equation are strictly positive, so
has no roots ifbee satisfies

bee,
ds21~y!

dy U
min

5O~1!, ~31!

with the otherbmn arbitrary. In this case,f (y) has exactly
one root. This can also be seen by noting that the sum of
first two terms in Eq.~17! is monotonically increasing in this
case, as is the third term; hence Eq.~17! has just one root.

D. Conditions for the occurrence of various numbers
of steady states

Here we list several necessary or sufficient conditions
the occurrence of one, three, or five or more roots. We w
apply these conditions to a specific version ofs in Sec. III.

1. Sufficient condition for exactly one root

A sufficient condition for there to be exactly one root
that f (y) be monotonically increasing. This is certainly th
case whenbee satisfies Eq.~31!.

2. Conditions for three or more roots

A necessary condition for there to be at least three roo
that d f(y)/dy be negative for somey and hence that this
quantity change sign at some point. Differentiation of E
~17! yields

d f~y!

dy
5

ds21~y!

dy
2bee1

biebeis8~Vi !

11bii s8~Vi !
, ~32!

where primes denote differentiation with respect toVi . The
first and last terms in Eq.~32! are non-negative, so a nece
sary condition forf (y) to change sign is Eq.~31! with the
inequality reversed, since the final term in Eq.~32! ap-
proaches zero at largeuVi u.

The function f (y) is bounded above and below by th
functions obtained by replacings(Vi) in Eq. ~17! by 1 and 0,
respectively. We denote these functions, shown in Fig. 3
f 1(y) and f 2(y), respectively. A necessary condition fo
f (y) to have three or more roots is that the maximum off 1

be positive and the minimum off 2 be negative~satisfied in
the example in Fig. 3!. A sufficient condition is that the
maximum off 2 be positive and the minimum off 1 be nega-
tive ~not satisfied in the example in Fig. 3!.

If biebei50, f (y) has at most three roots, as shown
Sec. II C.
t

he

r
ll

is

.

y

3. Necessary conditions for five or more roots

For f (y) to have five or more roots, all necessary con
tions for three roots must be satisfied. In addition,d f(y)/dy
must have a positive value at some point in zone II betw
the turning points off 6(y), as illustrated by the solid curve
in Fig. 3. This curve also shows that this is not asufficient
condition.

III. PARAMETER DEPENDENCE OF STEADY STATES

When studying the dynamics of the cortex, stable ste
states sit in basins of attraction for adiabatic dynamics, wh
unstable ones define the boundaries of these basins.~This is
simply a consequence of the dynamics under the influenc
relevant ‘‘forces,’’ a concept that is made more precise
Sec. IV.! Hence a key step in understanding cerebral dyna
ics systematically is to characterize the regimes of param
space in which there are one, three, or five or more root
the steady-state equation~17!.

In this section we specialize to the particular form of s
moidal function used in our previous work and in the illu
trative figures in earlier sections@1,8–10,15,16#

s~Vi !5
1

11exp@2C~Vi2V0!#
, ~33!

whereC andV0 are constants. The inverse ofs is given by

s21~y!5V01
1

C
@ lny2 ln~12y!#. ~34!

In the Appendix we show that this form ofs satisfies all the
conditions assumed in Sec. II.

We wish to study the dependence of the number of ro
on the parameters of our model, particularly thebmn andV0.
We do this in a simplified way by restricting the interrel
tionships between thebmn on physiological grounds. This
reduces the dimensionality of parameter space, includ

FIG. 3. Example of the behavior of the functionsf 1(y) ~upper
dashed curve! and f 2(y) ~lower dashed curve!, defined in Sec. II E.
The behavior off (y) in a case with one root is shown by the sol
curve. Regions I, II, and III discussed in Sec. III A are labeled a
their boundaries are indicated by colons.
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3562 PRE 58ROBINSON, RENNIE, WRIGHT, AND BOURKE
three dimensions corresponding to three independentbmn .
The root structure is then studied as a function of thebmn for
various values of the other parameters. The aim of this s
plification is to obtain insight into a physiologically realist
class of dynamical models. In future work we aim to co
pare the dynamics of these models directly with experime

A. General topology of root structure

We want not only to distinguish the number of stea
states of the cortex for specific parameters but to clas
whether these are solutions corresponding to highQe ~e.g.,
seizure states! or low Qe ~e.g., normal cortical states i
which neurons fire at far less than their physiologically ma
mal values!. We do this by counting the number of roo
between and beyond the pair of turning points off 6(y)
~zones labeled I, II, and III in Fig. 3!, after separating off the
case wheref 6(y) is monotonically increasing and thes
zones are undefined. This classification is crude in that
turning points are not fixed with respect to variations of t
bmn , but provides a useful coarse-grained categorizat
This analysis also proves to be useful in constraining
types of adiabatic dynamics that are possible in the syst
We will see in Sec. IV thatf (y) has dynamical significanc
beyond the positions of its roots: It is the gradient of
effective potential energy function in a physiologically rea
istic model of the cortex.

We label the case wheref 2(y) is monotonically increas-
ing 1A, where the number denotes the number of roots
the letter is an arbitrary label for the subcategory. The v
ous other cases and their category labels are given in Tab
where they are distinguished by the numbers of roots
zones I, II, and III of Fig. 3. The possibilities listed~plus
class 1A) are exhaustive because the difference betw
f (y) and f 2(y) is monotonically increasing, which mean
that there can only be one or zero roots off (y) in either zone
III or I, where f 2(y) is also monotonically increasing. Fig
ure 4 illustrates the appearance off (y) in each case.

As the underlying parameters off (y) ~e.g., thebmn and
V0) are changed, its roots appear or disappear in pairs.
only exceptions occur at sets of zero measure in param
space where four roots can appear or disappear sim
neously or one pair can appear just as another disapp

TABLE I. Classes of root structure off (y). The first column
gives the category name, the numeral denoting the total numb
roots ~the minimum number in the 51 zone!. The remaining three
columns list the numbers of roots in zones I, II, and III of Fig.
respectively. Class 1A has no turning points off 6(y), so it is
categorized separately since zones I–III are meaningless in
case.

Category I II III

1B 1 0 0
1C 0 0 1
1D 0 1 0
3A 1 1 1
3B 0 2 1
3C 1 2 0
51 1 3 1
-

-
t.

fy

-

e

n.
e
m.

d
i-

I,
n

n

he
ter
ta-
rs.

Hence one-root and five-or-more-root zones of param
space can touch at most at a set of measure zero. Sim
arguments regardingd f(y)/dy imply that the 1A zone can
touch the three-root zone at most at a set of measure z
These and analogous arguments restrict the connectiv
between zones to those shown in Fig. 5, which omits c
nections of zero measure. The key significance of this fig
is that it constrains the paths that the system can take a
dynamics evolve under the influence of adiabatic feedba
For example, no robust~i.e., insensitive to slight changes i
parameters! feedback mechanism can carry the system fr
the five-root zone to the one-root zone without pass
through the three-root zone.

B. Random connectivity model of synaptic densities

In the simplest model for the development of interconn
tions between populations of inhibitory and excitatory ne
rons, the number of connections is proportional to the nu
ber of synapses available@8,16,17#. We term this therandom
connectivity model, but stress that other possibilities are al
consistent with current physiological knowledge. Suppo
excitatory neurons have fractionsf A and f D , respectively, of
the total numbers of axonal and dendritic synapses in
cortex, while inhibitory neurons have fractions 12 f A and
12 f D . Suppose further that a fractione of all connections to
cortical dendrites originate outside the cortex. Then, ass
ing random connectivities, the second column in Table
lists the fractionsFmn of connections from neuronal popula
tion n to populationm, where the subscripts denotes sub-
cortical origins. The third column lists the corresponding c
efficients amn that appear in Eqs.~9! and ~10!. These are
obtained from theFmn via

amn5
Fmn

(
n

Fmn

, ~35!

so that

(
m

amn51 ~36!

for all n. Equation~36! imposes a normalization that wa
neglected previously@1,8–10,15#, but which is required to
ensure that inputs to neurons are correctly weighted.~This
did not make a large difference in these earlier works, wh
were primarily concerned with excitatory effects and h
(naen'0.9.! This normalization applies to all models, no
just the random connectivity model. One sees from Table
that aen5ain for all n in the random connectivity model.

In earlier sections, theamn entered the cortical equation
in the combinationbmn5gmamn , where thegm were synap-
tic gains. This model is too simple to study dynamical fee
back, which can selectively affect the effective gain at sy
apses between particular populations of neurons rather
at all synapses at once. We thus generalize it by noting
every synaptic connection involves one neuron acting on
other. A reasonable physiological approximation to the g
at a junction between an incoming neuron of populationn
and an outgoing one of populationm is thus to factorize it

of

is
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FIG. 4. Illustration of the seven root structures off (y) listed in Table I, plus the structure corresponding to class 1A. Each case also
shows f 6(y) as dashed curves and is computed using Eqs.~33! and ~34! with bei52.5 andbii 5bis50. Not all cases correspond to th
random connectivity model of Sec. III B.~a! 1A, with bee5bie52 andbes50. ~b! 1B, with bee5bie55 andbes50. ~c! 1C, with bee

5bie55 andbes56. ~d! 1D, with bee5bie54 andbes51.8. ~e! 3A, with bee5bie510 andbes50. ~f! 3B, with bee5bie56.2 andbes

51.3. ~g! 3C, with bee5bie55 andbes51.2. ~h! 51, with bee5bie58 andbes50.9.
in
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into the product of an absolute strengthusnu of the stimulus
per unit incoming signal and a strength of responsel m per
unit stimulus@16#. Physiologically,usnu is proportional to the
amount of chemical neurotransmitter released per unit
coming signal, whilel m measures the net response at the c
body per unit concentration of neurotransmitter at the s
-
ll
-

apses, including any effects of dendritic signal attenuati
The factorsusnu can be absorbed into thebmn without loss of
generality, but thel m must then appear explicitly.~In gen-
eral, theusnu also incorporate different maximum firing rate
for the various populations, which removes the need to n
malize the sigmoidal functions to any value other th
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unity.! This then leads to steady-state equations for
model of the same form as in previous sections, but withbmn
replaced byl mbmn and

bin5
l i

l e
ben ~37!

for all n. Hence, for a fixed ratiol i / l e ~only the ratio is an
independent parameter!, only three of thebmn are indepen-
dent in this model. This simplifies the study of its parame
space in what follows. Note that there is no analog of E
~36! for the bmn once they have incorporated theusnu.

Previous works@1,8–10,15–17# have argued on physi
ological grounds thataee andaie ~equal in the random con
nectivity model! are larger than the otheramn . Although we
do not impose such a restriction in the present work,
consider maximal values ofbee5bie that are larger than
those of the otherbmn in the specific numerical example
discussed below.

C. Parameter dependence of root structure
of the random connectivity model

We can now apply the conditions discussed in Sec. II E
study the occurrence of various numbers of roots in the r

FIG. 5. Allowed connectivities between zones of parame
space corresponding to the eight classes of root structure. Zone
bound one another in parameter space at a set of nonzero me
only if they are linked by a line in this diagram.

TABLE II. Fractional synaptic densitiesFmn and the corre-
sponding coefficientsamn from Eqs.~9! and ~10!, calculated from
the random connectivity model. Excitatory neurons have fracti
f A and f D of cortical axonal and dendritic synapses, respective
while extracortical connections occupy a fractione of the total cor-
tical dendritic synapses.

mn Fmn amn

ee (12e) f Af D (12e) f A

ei (12e)(12 f A) f D (12e)(12 f A)
es e f D e
ie (12e) f A(12 f D) (12e) f A

i i (12e)(12 f A)(12 f D) (12e)(12 f A)
is e(12 f D) e
is

r
.

e

o
n-

dom connectivity model withs given by Eq.~33!. We con-
sider three regimes, depending on the size of the ratiol i / l e .

1. General li / l e

A sufficient condition for exactly one root to occur is th
f (y) be monotonically increasing. This is certainly the ca
if f 2(y) is monotonically increasing becauses(Vi) in Eq.
~17! is a monotonically increasing function ofy ~see Sec.
II C!. Using Eq.~A4!, we thus find that zone 1A of param-
eter space satisfies

bee,4/C, ~38!

which is the condition forf 2(y) to have no turning points
All three-root and five-root zones must satisfy the reve
inequality.

A further necessary condition for three roots to exist
that the maximum off 1 be positive and the minimum off 2

be negative. Equations~17! and ~A2! imply that the turning
points of f 6(y) occur at

y5
1

2F16S 12
4

Cbee
D 1/2G . ~39!

If bee@4/C, one then hasy'1/Cbee, 121/Cbee, with the
maximum of f 6 occurring at the first of these two roots
Substitution of this approximate value ofy into Eqs.~17! and
~34! yields the following condition forf 1 to be positive:

bee,
1

C
exp@CV0211Cbei2Cbesfs#. ~40!

For the minimum off 2(y) to be negative, a similar analysi
to the above but fory'1 yields the requirement

bee.
1

C
$u1 ln@u1 ln~u1••• !#%, ~41!

u5CV02Cbesfs11. ~42!

The upper bound~40! increases exponentially withV0,
whereas the lower bound~41! only increases linearly.

For five roots to occur,f (y) must necessarily have a pos
tive slope somewhere between the turning points off 6(y).
The first two terms in the relevant expression~32! are nega-
tive in total between the turning points off 2(y), while the
last peaks wheres8 peaks, i.e., whereVi5V0 ands85C/4
from the Appendix. Replacing the first term on the righ
hand side of Eq.~32! by its minimum 4/C and the last term
by its maximum value, a necessary condition for five or mo
roots to occur is found to be

~11bii C/4!~bee24/C!,Cbeibie/4. ~43!

On making the identification~37! for the random connectiv-
ity model, one finds that this requirement cannot be satis
for bee.4/C for any choice ofl i / l e , so no five-or-more-root
zone can exist.

2. li / l e@1

If l i / l e@1 we can improve on the estimate~43!. Specifi-
cally, Eqs. ~14! and ~37! imply that Vi increases withl i .

r
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FIG. 6. Root structure as a function of parameter space for the random connectivity model withV053, C'1.81, andl i / l e54. The zones
from Table I are shown as functions ofbesfs andbee for variousbei . In order of increasing darkness the zones are 1A, 1B, 1C, 3A, and
3B. Small irregularities in the boundaries between zones are artifacts of the numerical calculations. The analytic bounds of the t
zone, Eqs.~40! and ~41! with Eq. ~44!, are shown for comparison as solid curves.~a! bei50, ~b! bei55, and~c! bei510.
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Hence, for sufficiently largel i , Vi exceedsV0 and f (y)
' f 1(y) over most of the range iny, particularly at largey
where f has a minimum. Similar arguments to those lead
to Eq. ~41! then imply that the three-root zone satisfies E
~41!, but with

u5CV0111Cbei2Cbesfs . ~44!

Figure 6 shows the one-root and three-root zones as f
tions of besfs and bee for three values ofbei , V053, and
l i / l e54. The conditions~40! and~41! with Eq. ~44!, shown
for comparison, are seen to provide reasonable estimate
the boundaries of the three-root zone~although the upper
bound errs significantly on the high side for largebei), while
the boundary of zone 1A is consistent with Eq.~38!. The
connectivities between the various subzones are seen to
cord with Fig. 5, although there are no zones of type 1D or
3C in this case. The casebei50, shown in Fig. 6~a!, corre-
sponds to a purely excitatory network of cortical neuro
This case has been previously studied with equivalent res
@1#.

3. li / l e51

A number of simplifications follow if we specialize to th
case l i / l e51. Most importantly, Eqs.~13!–~15! imply Ve
5Vi5s21(y). Hence we find

f ~y!5s21~y!2~bee2bei!y2besfs . ~45!

This function has the same functional form asf 6(y) and
hence can have only zero or two turning points and one
three roots. In this special case there are turning points o
for bee2bei.4/C and then the three-root zone satisfies
g
.

c-

of

ac-

.
lts

r
ly
e

necessary and sufficient conditionsf (y).0 at the left turn-
ing point of f and f (y),0 at the right turning point. Ifbee
2bei@4/C these conditions become

bee2bei.
1

C
$u1 ln@u1 ln~u1••• !#%, ~46!

u5CV0112Cbesfs , ~47!

bee2bei,
1

C
exp@CV0212Cbesfs#. ~48!

Equation~48! and the restrictionbee2bei.4/C immediately
imply the condition

besfs,~CV0212 ln4!/C ~49!

on the three-root zone and hence

V0.~11 ln4!/C ~50!

for three roots to exist for positivebesfs .
Figure 7 shows the one-root and three-root zones as fu

tions of besfs and bee for two values ofbei , V053, and
l i / l e51. The conditions~46! and ~48!, shown for compari-
son, are seen to provide very good estimates of the bou
aries of the three-root zone, while Eq.~49! is also satisfied.
As in Fig. 6, the connectivities between the various zones
in accord with Fig. 5.



hree-root

3566 PRE 58ROBINSON, RENNIE, WRIGHT, AND BOURKE
FIG. 7. Root structure as a function of parameter space for the random connectivity model withV053, C'1.81, andl i / l e51. The zones
from Table I are shown as functions ofbesfs andbee for variousbei . In order of increasing darkness the zones are 1A, 1B, 1C, 1D, 3A,
and 3B. Small irregularities in the boundaries between zones are artifacts of the numerical calculations. The analytic bounds of the t
zone, Eqs.~46! and ~48!, are shown for comparison as solid curves.~a! bei55 and~b! bei510.
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In this caseVi!V0 and inhibitory neurons thus have littl
effect on the cortical dynamics. The resulting root struct
is very close to that of Fig. 6~a!, with only a very weak
dependence onbei .

IV. GLOBAL CORTICAL DYNAMICS
OF THE RANDOM CONNECTIVITY MODEL

Many cortical phenomena occur on spatial scales com
rable to the whole cortex and on time scales much lon
than those of dendritic integration in individual neurons
even the faster cortical rhythms~a few tens of milliseconds!.
In particular, there are slow rhythms~so-called delta and
theta rhythms! and so-called slow waves, which are pr
longed deviations of cell potential without oscillatory com
ponents. These typically have time scales of 100 ms
longer@13#, as do chemical feedback mechanisms that mo
late the overall state of the cortex. Similarly, the evok
response potentials that follow a stimulus have time scale
several hundred milliseconds and are known to involve c
ditioning over even longer periods@13#. Previous theoretica
work has also shown that the globally uniform (k50) mode
is the least stable or most unstable and hence it is likely
play a significant role in the dynamics@1#.

In this section we use the results of the preceding anal
as the groundwork to treat large-scale cortical dynamics
long time scales. In the future, this treatment will form t
basis of understanding adiabatic control of the cortical s
via feedback or external stimuli. We specialize to the case
spatially uniform ~global! dynamics on time scales muc
longer than those the dendritic integration time of;10 ms.
In Sec. IV A we derive the relevant equations of motion f
the random connectivity model withl i / l e51, which yields
closed-form analytic results. Section IV B treats linear d
persion and stability, reproducing and generalizing previ
results in the adiabatic regime. Numerical results in S
IV C illustrate these results by applying them to large-sc
dynamics and to the cortical response to sinusoidal variat
of fs .

A. Adiabatic global cortical dynamics

The equations of global cortical dynamics~GCD! are
those of Sec. II A, with the deletion of the Laplacian term
e
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Eq. ~8!. If we specialize to adiabatic dynamics with tim
scales much longer than the dendritic integration time c
stantsa21 andb21, Eqs.~5!–~7! are replaced by Eq.~11!.
For l i5 l e one also hasVi5Ve , Qi5Qe , andQai5Qae .

We introduce the notation

De,i5
1

ge,i
2 S d2

dt2
12ge,i

d

dt
1ge,i

2 D . ~51!

Noting thatg i is extremely large for typical cortical param
eters @1#, we can make the local inhibition approximatio
Di'1 @1#, which yieldsf i5Qi5Qe via Eq. ~8!. Using Eq.
~8! again we find

Defe5Qe ~52!

5s~Ve! ~53!

5s~gQae! ~54!

5s~beefe2beiQe1besfs!, ~55!

where Eqs.~1!, ~9!, and~11! and the local inhibition approxi-
mation have been used in obtaining Eqs.~53! and ~54!. We
have also writtenbmn5gmamn in Eq. ~55!, as in previous
sections, but now reinterpret thebmn in the generalized way
introduced in Sec. III B~i.e., thebmn incorporate the stimu-
lus strengthusnu).

If we rewrite Eq.~55! using y5Qe5s(Ve), as in previ-
ous sections, a comparison with Eq.~52! yields

s21~y!5beefe2beiy1besfs ~56!

and hence

Deh~y!5beey, ~57!

h~y!5s21~y!1beiy2besfs . ~58!

Equation ~57! is equivalent to the motion of a Newtonia
particle under the influence of both frictional and conser
tive forces, as can be seen by writing it in the form

d2h~y!

dt2
522ge

dh~y!

dt
1ge

2@beey2h~y!#. ~59!
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The first and second terms on the right-hand side of Eq.~59!
represent frictional and conservative forces, respectiv
The fixed points of Eq.~59!, representing the steady states
the system, coincide with the roots of the functionf (y) dis-
cussed in previous sections sincef (y)5h(y)2beey. The
function f (y) is thus proportional to the conservative part
the force, but has the opposite sign.

If friction dominates, accelerations are small and Eq.~59!
can be simplified to

dy

dt
'

ge@beey2h~y!#

2Fds21~y!

dy
1beiG . ~60!

Equation~60! has the same fixed points as Eq.~59! and its
denominator is positive definite.

It is possible to formulate Eq.~59! in terms of a potential
U(h) via

U~h!5ge
2E

h0

h

@h82beey~h8!#dh8, ~61!

whereh0 is an arbitrary reference point, which we place
h050, andh8 is a dummy variable. The inversey(h) exists
and is unique becausedh/dy is positive definite. Integration
by parts yields

U~h!5
ge

2

2 Fh222beeS hy2E
y0

y

h~y8!dy8D G , ~62!

wherey05y0(h0) andy8 is a dummy variable. If we substi
tute the explicit form~34! for s21(y) into Eq. ~58!, we find

U~h!5
ge

2

2 Fh222beeH hy1~besfs2V0!~y2y0!

2
bei

2
~y22y0

2!2
1

C
@ylny2y0lny0

1~12y!ln~12y!2~12y0!ln~12y0!#J G , ~63!

with

h~y!5V01
1

C
lnS y

12yD . ~64!

It is worth noting thatU(h) in Eq. ~63! is measured rela
tive to a pointh0 that depends on thebmn . Since the zero of
U is arbitrary, one can always reexpress it relative to a po
that does not depend on thebmn or V0. Specifically, if one
chooses this point to be the unique point whereh050 when
all thebmn are zero andV050, one must usey051/2 in Eq.
~63!.

Figure 8 shows an example ofU(h), plotted againsty, in
zone 3A of Fig. 6~a!, near the boundary with zone 1B. Note
the two minimums, corresponding to the stable fixed poin
and one maximum at the unstable fixed point. The div
gences ofU(h) asy→0,1 prevent the system from reachin
these points. As the boundary of zone 1B is approached and
crossed, the right-hand minimum potential rises to exc
y.
f

t

t

,
r-

d

the potential at the maximum, leaving only the left-ha
minimum. Likewise, the boundary of zone 1C corresponds
to the central maximum falling below the left-hand min
mum, leaving only the right-hand minimum.

Formulation of GCD in terms of a potential emphasiz
the physical requirement that fixed points of the system m
alternate between stable and unstable in character@apart from
degenerate cases of multiple coincident roots off (y)#: Be-
tween any two minimums ofU(h) there must be a maxi
mum. Moreover, the first and last fixed points must be sta
or else the system would have additional fixed points at
finite Ve,i , which is a contradiction. These conclusions a
not restricted to the random connectivity model withl i
5 l e , but hold for general forms ofs and arbitrary coeffi-
cientsbmn for the same physical reasons.

B. Linear dispersion and stability

In the case of small perturbations from a fixed pointyf ,
Eq. ~57! can be Fourier transformed to yield the linear d
persion equation

~ge2 iv!25
ge

2bee

ds21~yf !

dy
1bei

, ~65!

where the notation in Eq.~65! indicates that the derivative o
s21(y) is to be evaluated atyf . This result reproduces Eq
~55! of Ref. @1# for zero wave number (k50), l i5 l e , and
bei50, although this earlier result was in a somewhat diff
ent notation.

The instability threshold of a fixed point can be calculat
from the point where the imaginary part ofv is zero @1#.
Hence we find that instability occurs for

bee.
ds21~yf !

dy
1bei . ~66!

This result generalizes Eq.~57! of Ref. @1# to nonzerobei for
l i5 l e and k50. It confirms physical intuition in that feed
back from the inhibitory neurons to the excitatory ones rai
the instability threshold.

Sufficiently strong in-phase feedback of a subject’s EE
~by allowing it to modulate a flickering light source in the
field of vision, for example! will rapidly induce a seizure
@18#, as will chance correlations of external flicker with EE

FIG. 8. PotentialU(h) vs y, given by Eq.~67! for the random
connectivity model withbee55, bei50, andbesfs50.3, near the
boundary between zones 3A and 1B in Fig. 6~a!.
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FIG. 9. Comparison of the dynamics for the full and adiabatic GCD equations for a random connectivity model system withbee530,
bei53, andbesfs50.3. The solid line shows the full result fora5b5400 s21, while the dotted and dashed lines show results from
first-order approximation~60! and the second-order approximation~59!, respectively.~a! System initialized withy50.05. ~b! System
initialized with y50.005.
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signals@18,19#, so-calledphotic epilepsy. This implies tha
the instability threshold~66! has been lowered. We can es
mate the threshold for such feedback-induced seizures
replacingfs in Eq. ~58! by Aeic(y2yf), whereA andc are
real constants representing the amplitude and phase o
feedback signal. After linearizing the resulting equation,
find a dispersion equation of the form~65! with the replace-
ment

bei→bei2besAeic. ~67!

Instability occurs for

bee.
ds21~yf !

dy
1bei2besA cosc, ~68!

where the minimum threshold occurs atv50. The threshold
is lowered relative to Eq.~66! for in-phase feedback an
raised for feedback that isp out of phase. As one migh
expect, the effect of feedback that isp out of phase is
equivalent to increasingbei , the coefficient that describe
the effect of inhibitory neurons on excitatory ones. Seiz
induction, as well as the variation of its threshold withc,
provides a potential experimental test of the theory prese
here and in previous works@1,16#.

C. Nonlinear dynamics and the effects of dendritic integration

Figure 9 compares solutions of the full GCD equatio
including the effects of dendritic integration for realist
physiological valuesa5b5400 s21 in Eqs. ~5!–~7!, with
the first- and second-order adiabatic approximations~60! and
~59!. The parameters correspond to a point in zone 3A with
two stable fixed points separated by one unstable one. In
case, Eqs.~5!–~7!, ~9!, and~10! are replaced by

S d2

dt2
12a

d

dt
1a2DVe,i5a2@~bee2bei!fe2besfs# ~69!

for l i5 l e . Figure 9~a! shows a case where the system
initialized in the basin of attraction of the highest fixed poi
which corresponds to a seizure state, but near the mi
~unstable! fixed point. The full GCD equations and Eqs.~59!
and ~60! all imply that the system accelerates to largery,
before approaching the highest fixed point asymptotica
with t. The full solution, including dendritic effects, has a
by

he
e

e

ed

s

is

,
le

y

initial steep transient, followed by very similar behavior
the other solutions. The time evolution is very similar ap
from a few milliseconds lag between the curves. Figure 9~b!
shows results for the same system as in Fig. 9~a!, except that
it was initialized below the lowest fixed point. In this cas
the three solutions are again similar after a;10-ms transient
in the full solution, converging smoothly toward the fixe
point. Neither Eq.~59! nor Eq.~60! shows clear superiority
over the other in this case.

The adiabatic approximation made in deriving Eqs.~59!
and ~60! depends ona (5b) being larger than the invers
time scale of the global dynamics. Figure 10 shows the ef
of varying a over the range1000 – 100 s21. In each case
the system is the same as in Fig. 9, except that it is initiali
slightly above the lowest fixed point. Fora.200 s21, Eqs.
~59! and~60! give reasonable approximations to the dyna
ics in this and other examples investigated, in accord w
physical expectations. Again, neither approximation can
strongly preferred on the grounds of accuracy.

Figure 11 shows a further comparison of the full GC
equations with the approximations~59! and ~60!. In these
results, a 10% sinusoidal modulation offs was superposed
on a mean value of unity. The figure shows that Eqs.~59!
and~60! give good approximations to the actual behavior
frequencies below about 10 Hz, consistent with the result
Figs. 9 and 10. At higher frequencies, the first-order res
~60! greatly underestimates the amplitude of the oscillatio
relative to the full result, indicating that high frequencies a
more strongly damped in the corresponding adiabatic dis
sion equation than in the full one. The second-order re
~59! gives a good approximation to the dynamics for fr
quencies&30 Hz, with an upper bound to its regime o
validity of 10–20 Hz fora5100 s21. This upper bound is
not a significant limitation since the adiabatic approximati
is not intended to be valid at frequencies above about 10
in any case and only applies fora*100 s21.

V. SUMMARY

In this work we have investigated the steady states
global dynamics of our recent continuum model of electri
activity in the cerebral cortex, generalized to allow for d
ferent effective gains at synapses between different pop
tions of neurons. Particular attention has been paid to
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FIG. 10. Effect ofa (5b) on the agreement between the full and adiabatic GCD equations for the same system as in Fig
initialized with y50.025. The solid line shows the full result, while the dotted and dashed lines show results from the first-order a
mation ~60! and the second-order approximation~59!, respectively.~a! a51000 s21. ~b! a5400 s21. ~c! a5200 s21. ~d! a5100 s21.
i
o
o

yet
ex-
us
and
the
steady states of the system and to adiabatic global dynam
General criteria for the occurrence of various numbers

cortical steady states have been found. In the case of
previously used sigmoidal function~33!, a maximum of three
roots can occur for the random connectivity model~other
cs.
f
ur

models can have at least five, although we have not
found any cases with more than five, despite searching
tensively!. The regions of parameter space in which vario
numbers of roots occur have been studied for this model
their boundaries have been found to be consistent with
sinusoidal
-order
FIG. 11. Comparison of the full and adiabatic frequency responses of the same system as in Figs. 9 and 10, where a 10%
modulation has been added tofs . The solid line shows the full result, while the dotted and dashed lines show results from the first
approximation~60! and the second-order approximation~59!, respectively.~a! Modulation at 3 Hz.~b! Modulation at 10 Hz.~c! Modulation
at 30 Hz.~d! Modulation at 50 Hz.



ac
eu

tio
s
-
lic
to
.

f i
h
ld
it

C
rit
ro
a
od
en

t
d
e
a
th
b

ng

de
fo
cu
r

i-

t
e
t t
si
e
al
d

t a

usly
ical

in-
ikely
oisy

rk
us-

he
by

d

in
ich
d

Eq.

e

3570 PRE 58ROBINSON, RENNIE, WRIGHT, AND BOURKE
analytic criteria obtained here.
For a particular case of our model, in which the char

teristic response strengths of excitatory and inhibitory n
rons are equal (l i5 l e), Eqs. ~59! and ~60! have been ob-
tained as approximations to the full GCD equations~1!, ~5!–
~10!, and~33! with ¹2 replaced by zero in Eq.~8!. Equation
~59!, a second-order equation, is equivalent to the equa
of motion of a Newtonian particle in a potential in the pre
ence of friction. Equation~60! applies in the case that fric
tion dominates the dynamics. We have obtained exp
forms for the potential and force functions, allowing us
characterize the basins of attraction of the steady states

The approximate linear dispersion relation~65! general-
izes the results of previous work@1# to include inhibitory
effects more fully in the adiabatic limit fork50. Stability
boundaries are also generalized to include the effects o
hibition and direct feedback of cortical signals as input. T
results confirm that inhibition raises the instability thresho
while feedback can either raise or lower it depending on
phase relative to the signal.

Numerical results have confirmed that the adiabatic G
equations approximate the full ones adequately for dend
integration times in the physiologically observed range, p
vided the characteristic time scales of the dynamics
longer than about 100 ms. The response to sinusoidal m
lations of the system is also found to agree well for frequ
cies below about 10 Hz.

The results obtained here provide the basis from which
address the effects of feedback on large-scale cortical
namics in future work. Steady states are the most fundam
tal features of the dynamical system. Their basins of attr
tion can evolve as a result of the feedback mechanisms
are known physiologically to operate on the cortex, there
allowing for more complicated dynamics, possibly includi
limit cycles or chaotic evolution~which may, of course, also
occur on faster time scales as a result of voltage-depen
changes in ionic conductivities of neuronal membranes,
example!. Many features of EEGs are large scale and oc
in the adiabatic temporal regime. These include evoked
sponse potentials, the alpha, delta, and theta rhythms@13#,
the characteristic ‘‘spike and wave’’ signal of petit mal se
zures@13#, and the progression of grand mal seizures@13#.
The present work thus promises to have wide application
interpreting phenomena such as these and in determining
relevance of our model to such situations. Even when fe
backs and dynamics are not adiabatic, they occur agains
background of the instantaneous fixed points and their ba
of attraction that still constrain the dynamics. One furth
effect that must be incorporated is the existence of spati
nonuniform eigenmodes and the resulting nonlinear mo
mode interactions. Such interactions are likely to be jus
.
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important as feedbacks and must be included simultaneo
in any attempt to obtain a detailed understanding of cort
waves and EEGs. Nonetheless, spatially uniform modes
clude the least damped cortical responses and are thus l
to contain the largest spectral response to complex or n
cortical inputs.
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APPENDIX: VERIFICATION
THAT THE REQUISITE CRITERIA ARE SATISFIED

BY THE SPECIFIC FORM „33… OF s

In this appendix we verify that the form ofs used in our
previous work has all the properties required in Sec. II. T
sigmoidal function we have used and its inverse are given
Eqs.~33! and~34!. We find the following results by repeate
differentiation of these expressions:

ds~Vi !

dVi
5Cs~12s!, ~A1!

d2s~Vi !

dVi
2 5C2s~12s!~122s!, ~A2!

d3s~Vi !

dVi
3 5C3s~12s!~126s16s2!, ~A3!

ds21~y!

dy
5

1

CS 1

12y
1

1

yD , ~A4!

d2s21~y!

dy2
5

1

CS 1

~12y!2 2
1

y2D , ~A5!

d3s21~y!

dy3
5

2

CS 1

~12y!3 1
1

y3D . ~A6!

The above expressions satisfy our requirements~2!–~4! in
Sec. II A. It is straightforward to show that the expression
Eq. ~A1! is non-negative and has a single peak, about wh
it is symmetric. All the derivatives shown are well define
and continuous in the relevant ranges. The maximum of
~A1! is of order unity forC of order unity and 0,s,1.

We now turn to the additional criteria in Sec. II C. W
find that Eq.~A4! is indeed symmetric abouty51/2 and that
Eqs.~26!–~28! are satisfied.
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